Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: mdl-36889041

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
2.
Mult Scler Relat Disord ; 72: 104605, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36907120

ABSTRACT

Obesity-induced insulin resistance (OIR) has been associated with an increased prevalence of neurodegenerative disorders such as multiple sclerosis. Obesity results in increased blood-brain barrier (BBB) permeability, specifically in the hypothalamic regions associated with the control of caloric intake. In obesity, the chronic state of low-grade inflammation has been implicated in several chronic autoimmune inflammatory disorders. However, the mechanisms that connect the inflammatory profile of obesity with the severity of experimental autoimmune encephalomyelitis (EAE) are poorly defined. In this study, we show that obese mice are more susceptible to EAE, presenting a worse clinical score with more severe pathological changes in the spinal cord when compared with control mice. Analysis of immune infiltrates at the peak of the disease shows that high-fat diet (HFD)- and control (chow)-fed groups do not present any difference in innate or adaptive immune cell compartments, indicating the increased severity occurs prior to disease onset. In the setting of worsening EAE in HFD-fed mice, we observed spinal cord lesions in myelinated regions and (blood brain barrier) BBB disruption. We also found higher levels of pro-inflammatory monocytes, macrophages, and IFN-γ+CD4+ T cells in the HFD-fed group compared to chow-fed animals. Altogether, our results indicate that OIR promotes BBB disruption, allowing the infiltration of monocytes/macrophages and activation of resident microglia, ultimately promoting CNS inflammation and exacerbation of EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Multiple Sclerosis/pathology , Blood-Brain Barrier/pathology , Inflammation/pathology , Permeability , Obesity/complications , Mice, Inbred C57BL
3.
Cell Rep ; 42(1): 112035, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848232

ABSTRACT

Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.


Subject(s)
AMP-Activated Protein Kinases , Natural Killer T-Cells , Inflammation , Liver , Metabolome , Obesity , Animals , Mice
4.
J Neurochem ; 163(2): 113-132, 2022 10.
Article in English | MEDLINE | ID: mdl-35880385

ABSTRACT

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Subject(s)
COVID-19 , Animals , Astrocytes , Carbon , Cricetinae , Disease Models, Animal , Glucose , Glutamine , Ketoglutaric Acids , Mesocricetus , Pyruvates , SARS-CoV-2
5.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35377454

ABSTRACT

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Subject(s)
Insulin Resistance , Leptin , Adipose Tissue/metabolism , Animals , Inflammation/metabolism , Leptin/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism
6.
Cell Rep ; 37(3): 109839, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34624208

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Subject(s)
COVID-19/genetics , COVID-19/immunology , MicroRNAs/genetics , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Animals , Antiviral Agents/pharmacology , Biomarkers/metabolism , Cricetinae , Female , Ferrets , Gene Expression Regulation , Glycolysis , Healthy Volunteers , Humans , Hypoxia , Inflammation , Male , Mice , Middle Aged , Proteomics/methods , ROC Curve , Rats , COVID-19 Drug Treatment
7.
Front Med (Lausanne) ; 8: 637885, 2021.
Article in English | MEDLINE | ID: mdl-34490283

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect a broad range of human tissues by using the host receptor angiotensin-converting enzyme 2 (ACE2). Individuals with comorbidities associated with severe COVID-19 display higher levels of ACE2 in the lungs compared to those without comorbidities, and conditions such as cell stress, elevated glucose levels and hypoxia may also increase the expression of ACE2. Here, we showed that patients with Barrett's esophagus (BE) have a higher expression of ACE2 in BE tissues compared to normal squamous esophagus, and that the lower pH associated with BE may drive this increase in expression. Human primary monocytes cultured in reduced pH displayed increased ACE2 expression and higher viral load upon SARS-CoV-2 infection. We also showed in two independent cohorts of 1,357 COVID-19 patients that previous use of proton pump inhibitors is associated with 2- to 3-fold higher risk of death compared to those not using the drugs. Our work suggests that pH has a great influence on SARS-CoV-2 Infection and COVID-19 severity.

8.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R732-R741, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34549626

ABSTRACT

Although hypertension disrupts the blood-brain barrier (BBB) integrity within the paraventricular nucleus of hypothalamus (PVN) and increases the leakage into the brain parenchyma, exercise training (T) was shown to correct it. Since there is scarce and contradictory information on the mechanism(s) determining hypertension-induced BBB deficit and nothing is known about T-induced improvement, we sought to evaluate the paracellular and transcellular transport across the BBB within the PVN in both conditions. Spontaneously hypertensive rats (SHR) and WKY submitted to 4-wk aerobic T or sedentary (S) protocol were chronically catheterized for hemodynamic recordings at rest and intra-arterial administration of dyes (Rhodamine-dextran 70 kDa + FITC-dextran 10 kDa). Brains were harvesting for FITC leakage examination, qPCR evaluation of different BBB constituents and protein expression of caveolin-1 and claudin-5, the main markers of transcytosis and paracellular transport, respectively. Hypertension was characterized by increased arterial pressure and heart rate, augmented sympathetic modulation of heart and vessels, and reduced cardiac parasympathetic control, marked FITC extravasation into the PVN which was accompanied by increased caveolin-1 gene and protein expression, without changes in claudin-5 and others tight junctions' components. SHR-T vs. SHR-S showed a partial pressure reduction, resting bradycardia, improvement of autonomic control of the circulation simultaneously with correction of both FITC leakage and caveolin-1 expression; there was a significant increase in claudin-5 expression. Caveolin-1 content was strongly correlated with improved autonomic control after exercise. Data indicated that within the PVN the transcytosis is the main mechanism governing both hypertension-induced BBB leakage, as well as the exercise-induced correction.


Subject(s)
Blood-Brain Barrier/metabolism , Capillaries/metabolism , Capillary Permeability , Caveolin 1/metabolism , Claudin-5/metabolism , Exercise Therapy , Hypertension/therapy , Paraventricular Hypothalamic Nucleus/blood supply , Physical Conditioning, Animal , Tight Junctions/metabolism , Transcytosis , Animals , Blood-Brain Barrier/physiopathology , Capillaries/physiopathology , Cardiovascular System/innervation , Caveolin 1/genetics , Claudin-5/genetics , Disease Models, Animal , Hypertension/metabolism , Hypertension/physiopathology , Male , Physical Exertion , Rats, Inbred SHR , Rats, Inbred WKY , Sympathetic Nervous System/physiopathology
9.
bioRxiv ; 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33948587

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.

10.
Curr Opin Pharmacol ; 58: 44-51, 2021 06.
Article in English | MEDLINE | ID: mdl-33878567

ABSTRACT

Adipose tissue (AT) performs immunoregulatory functions beyond fat storage. In addition to adipocytes, AT has a diverse spectrum of resident and infiltrating immune cells in health and disease. Immune cells contribute to the homeostatic function of AT by adapting their metabolism in accordance with the microenvironment. However, how the metabolic reprogramming of immune cells affects their inflammatory profile and the subsequent implication for adipocyte function is not completely elucidated. Here, we discuss the available data on metabolic regulatory processes implicated in the control of adipose tissue-resident immune cells and their crosstalk with adipocytes.


Subject(s)
Adipocytes , Adipose Tissue , Homeostasis
12.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697943

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
13.
MethodsX ; 7: 100938, 2020.
Article in English | MEDLINE | ID: mdl-32551241

ABSTRACT

The understanding of how different cell types adapt their metabolism in the face of challenges has been attracting the attention of researchers for many years. Recently, immunologists also started to focus on how the metabolism of immune cells can impact the way that immunity drives its responses. The presence of a pathogen or damage in a tissue changes severely the way that the immune cells need to respond. When activated, immune cells usually shift their metabolism from a high energy demanding status using mitochondria respiration to a glycolytic based rapid ATP production. The diminished amount of respiration leads to changes in the mitochondrial membrane potential and, consequently, generation of reactive oxygen species. Here, we show how flow cytometry can be used to track changes in mitochondrial mass, membrane potential and superoxide (ROS) production in live immune cells. ● This protocol suggests a quick way of evaluating mitochondrial fitness using flow cytometry. We propose using the probes MitoTraker Green and MitoTracker Red/ MitoSOX at the same time. This way, it is possible to evaluate different parameters of mitochondrial biology in living cells. ● Flow cytometry is a highly used tool by immunologists. With the advances of studies focusing on the metabolism of immune cells, a simplified application of flow cytometry for mitochondrial studies and screenings is a helpful clarifying method for immunology.

14.
Immunobiology ; 225(3): 151935, 2020 05.
Article in English | MEDLINE | ID: mdl-32201093

ABSTRACT

Macrophages are essential components of the immune system. Macrophages can be derived from the bone marrow of mice with either recombinant M-CSF or L929 supernatant. Recent literature considers recombinant M-CSF- and L929-derived macrophages as equals, even though L929-derived macrophages are exposed to other substances secreted in the L929 supernatant, and not only M-CSF. Thus, we decided to perform a comparative analysis of both inflammatory and metabolic profiles of macrophages differentiated under the aforementioned conditions, which is relevant for standardization and interpretation of in vitro studies. We observed that, when treated with LPS, L929macs secrete lower levels of proinflammatory cytokines (TNF-α, IL-6, IL12) and present higher glycolysis and oxygen consumption when compared with M-CSFmacs. L929macs also have increased mitochondrial mass, with higher percentage of dysfunctional mitochondria. This sort of information can help direct further studies towards a more specific approach for macrophage generation.


Subject(s)
Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Macrophages/metabolism , Metabolome , Metabolomics , Animals , Biomarkers , Cell Line , Cytokines/metabolism , Energy Metabolism , Inflammation Mediators/metabolism , Metabolomics/methods , Mice
15.
Inflamm Bowel Dis ; 26(5): 697-708, 2020 04 11.
Article in English | MEDLINE | ID: mdl-31819985

ABSTRACT

BACKGROUND: The gut microbiota is a key element to support host homeostasis and the development of the immune system. The relationship between the microbiota and immunity is a 2-way road, in which the microbiota contributes to the development/function of immune cells and immunity can affect the composition of microbes. In this context, natural killer T cells (NKT cells) are distinct T lymphocytes that play a role in gut immunity and are influenced by gut microbes. In our work, we investigated the involvement of invariant NKT cells (iNKT) in intestinal homeostasis. RESULTS: We found that iNKT-deficient mice (iNKT-KO) had reduced levels of fecal IgA and an altered composition of the gut microbiota, with increased Bacteroidetes. The absence of iNKT cells also affected TGF-ß1 levels and plasma cells, which were significantly reduced in knockout (KO) mice. In addition, when submitted to dextran sodium sulfate colitis, iNKT-KO mice had worsening of colitis when compared with wild-type (WT) mice. To further address iNKT cell contribution to intestinal homeostasis, we adoptively transferred iNKT cells to KO mice, and they were submitted to colitis. Transfer of iNKT cells improved colitis and restored fecal IgA levels and gut microbiota. CONCLUSIONS: Our results indicate that intestinal NKT cells are important modulators of intestinal homeostasis and that gut microbiota composition may be a potential target in the management of inflammatory bowel diseases.


Subject(s)
Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Immunoglobulin A/analysis , Intestines/immunology , Natural Killer T-Cells/immunology , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/microbiology , Dextran Sulfate , Disease Models, Animal , Feces/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Free Radic Biol Med ; 145: 61-66, 2019 12.
Article in English | MEDLINE | ID: mdl-31525456

ABSTRACT

Over the past years, systemic derived cues that regulate cellular metabolism have been implicated in the regulation of immune responses. Ghrelin is an orexigenic hormone produced by enteroendocrine cells in the gastric mucosa with known immunoregulatory roles. The mechanism behind the function of ghrelin in immune cells, such as macrophages, is still poorly understood. Here, we explored the hypothesis that ghrelin leads to alterations in macrophage metabolism thus modulating macrophage function. We demonstrated that ghrelin exerts an immunomodulatory effect over LPS-activated peritoneal macrophages, as evidenced by inhibition of TNF-α and IL-1ß secretion and increased IL-12 production. Concomitantly, ghrelin increased mitochondrial membrane potential and increased respiratory rate. In agreement, ghrelin prevented LPS-induced ultrastructural damage in the mitochondria. Ghrelin also blunted LPS-induced glycolysis. In LPS-activated macrophages, glucose deprivation did not affect ghrelin-induced IL-12 secretion, whereas the inhibition of pyruvate transport and mitochondria-derived ATP abolished ghrelin-induced IL-12 secretion, indicating a dependence on mitochondrial function. Ghrelin pre-treatment of metabolic activated macrophages inhibited the secretion of TNF-α and enhanced IL-12 levels. Moreover, ghrelin effects on IL-12, and not on TNF-α, are dependent on mitochondria elongation, since ghrelin did not enhance IL-12 secretion in metabolic activated mitofusin-2 deficient macrophages. Thus, ghrelin affects macrophage mitochondrial metabolism and the subsequent macrophage function.


Subject(s)
Ghrelin/pharmacology , Interleukin-12/genetics , Interleukin-1beta/genetics , Macrophages, Peritoneal/drug effects , Tumor Necrosis Factor-alpha/genetics , Adenosine Triphosphate/genetics , Animals , Gene Expression Regulation, Neoplastic/drug effects , Ghrelin/chemistry , Glycolysis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages, Peritoneal/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/ultrastructure , Nitric Oxide/genetics , Signal Transduction/genetics
17.
Redox Biol ; 26: 101255, 2019 09.
Article in English | MEDLINE | ID: mdl-31247505

ABSTRACT

Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.


Subject(s)
Adaptive Immunity , Immune System/physiology , Immunity, Innate , Mitochondria/immunology , Mitochondrial Dynamics/immunology , Mitophagy/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glycolysis/immunology , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mitochondria/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Oxidation-Reduction , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...